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THE PRECISION EFFICACY ANALYSIS FOR REGRESSION

SAMPLE SIZE METHOD

"I have so heavily emphasized the desirability of working with few variables and large

sample sizes that some of my students have spread the rumor that my idea of the perfect study is

one with 10,000 cases and no variables. They go too far." (Cohen, 1990, p. 1305). Although

Darlington (1990), among others, has noted that the best rule for choosing sample sizes is simply

that more is better, 10,000 may be just a couple more than typically are necessary. Indeed, for

both statistical and practical reasons, researchers should choose for their sample size "the

smallest number of cases that has a decent chance of revealing a significant relationship if,

indeed, one is there" (Tabachnick & Fidell, 1989, p. 129).

When generalizability is the primary concern, as it is when regression is used to develop

prediction models, this concept translates as the smallest sample that will provide the required

reliability of results across multiple samples. Especially in multiple linear regression, which is

used for many purposes, necessary sample size depends heavily on the goals and design of the

analysis. Consequently, the selection of adequate and appropriate sample sizes is not always an

easy matter in regression.

Several methods currently exist to help researchers choose sample size, including

conventional rules, statistical power methods, and cross-validation methods. Unfortunately,

because of difficulties and contradictions among these various methods, sample size selection in

multiple regression has been problematic. For example, how does one reconcile the difference

among Cohen's (1988) statistical power method that recommends 48 subjects, Park and

Dudycha's (1974) method that advises 93 subjects, and Stevens' (1996) 15:1 subject-to-predictor

ratio that suggests 60? See Table 1 for several such discrepancies.

The general purpose of this study was to examine the efficiency of the Precision Efficacy

Analysis for Regression (PEAR) method for choosing appropriate sample sizes in regression

studies used for prediction. The PEAR method, which is based on the algebraic manipulation of

an accepted cross-validity formula, essentially uses an effect size to determine the subject-to-

variable ratio appropriate for the squared multiple correlation expected in a given study. For

example, using one set of criteria at an effect size of expected p2 = .40, the PEAR method

suggests a subject-to-variable ratio of approximately 15:1; but with the same criteria at an
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expected p2 of .20, the number of subjects required per variable increases to nearly 38:1. See

Table 2 for sample sizes recommended by the PEAR method for several other criteria.

Theoretical Perspectives

When researchers are most interested in testing the statistical significance of either a

sample multiple correlation or particular independent variables, several statistical power sample

size methods exist for those purposes (e.g., Cohen, 1988; Cohen & Cohen, 1983; Gatsonis &

Sampson, 1989; Kraemer & Thiemann, 1987; Milton, 1986). Unfortunately, statistical power to

reject a regression null hypothesis does not provide information about the number of subjects

needed to obtain the stable, meaningful regression coefficients required for prediction.

Therefore, choosing a sample size based on statistical power may not ensure that a regression

function will generalize to other samples from the target population, which is the crucial factor in

determining the validity of regression models to be used for prediction.

Alternatively, conventional rules have evolved that are based on the premise that with a

large enough ratio of subjects to predictors (e.g., 10 or 15 subjects for each predictor), the sample

regression coefficients will be reliable and will closely estimate the true population values.

Unfortunately, because most of these rules lack any measure of effect size, they can only be

effective at specific effect sizeswhich may not be appropriate for any given study. For

example, a 15:1 subject-to-variable ratio is acceptable only if the population squared multiple

correlation is over .40; otherwise, as the true squared multiple correlation decreases, expected

cross-validity shrinks so much as to make the prediction model worthless (Brooks &

Barcikowski, 1995).

Park and Dudycha (1974) were among the first to define mathematically a sample size

method using a random model, cross-validation approach. Unfortunately, they published tables

that were limited to only a few possible combinations of squared correlation and number of

predictors; also, their math is too complex for many researchers to derive the information needed

for the cases not tabulated. Darlington (1990) has provided two precision methods, but one

provides recommended sample sizes for only the validation sample (i.e., not the original

derivation sample) and the other provides sample sizes for better estimation of the true

population correlation rather than the cross-validity coefficient.

Due to the lack of an adequate method to determine sample sizes that ensures some
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measure of cross-validity, the PEAR method was developed. The primary goal of the PEAR

method is to reduce the upward bias of R 2, thereby enhancing the cross-validity potential of the

model so that results are less likely to be sample specific. In a sense, the PEAR method can be

viewed as cross-validation in reverse. That is, instead of determining by how much the sample

R 2 will shrink due to the sample size, the PEAR method determines how large a sample is

required to keep R 2 from shrinking too much. The theory underlying the PEAR method for

sample size selection is that the researcher, knowing that cross-validation is likely to cause

shrinkage in R 2, can set a limit as to the amount of shrinkage expected to occur. The concepts

of cross-validity shrinkage, precision efficacy, proportional shrinkage, effect size, and shrinkage

tolerance serve as the foundation for using the PEAR method of sample size selection to, in

Stevens' terms, "keep the shrinkage fairly small."

Cross-Validity Shrinkage

"Although we may determine from a sample R 2 that the population R 2 is not likely to be

zero, it is nevertheless not true that the sample R 2 is a good estimate of the population R 2"

(Cohen & Cohen, 1983, p. 105). While most questions concerning explanation, description, and

causal analysis require an adjusted R 2 estimate of p2 (such as the common RA formula most

often attributed to Wherry), most problems of prediction are concerned primarily with cross-

validity. From a generalizability viewpoint, an insufficient sample leads to results that, even

though maybe statistically significant, may apply only to the current sample and will not be

useful or practical for application to other samples. As Herzberg (1969) noted, "in applications,

the population regression function can never be known and one is more interested in how

effective the sample regression function is in other samples" (p. 4). Therefore, researchers must

use and report strategies that evaluate the replicability of their results; the best way to gauge this

generalizability is through an estimate of cross-validity. The squared cross-validity coefficient,

p2c, is considered to be the squared multiple correlation between the actual population criterion

values and the scores predicted by the sample regression equation when applied either to the

population or to another sample (Cattin, 1980b; Huberty & Mourad, 1980; Kennedy, 1988;

Schmitt, Coyle, & Rauschenberger, 1977).

Cross-validity correction formulas, symbolized by Rc2, which are based on estimates of

the mean squared error of prediction (Darlington, 1968; Herzberg, 1969), provide more accurate
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estimates of p2c than does R2. Formula methods of cross-validity are often preferred to

empirical cross-validation (e.g., data-splitting) so that the entire sample may be used for model-

building. Indeed, several formula estimates have been shown superior, or at least equivalent, to

empirical cross-validation techniques (Cattin, 1980a, 1980b; Drasgow, Dorans, & Tucker, 1978;

Kennedy, 1988; Morris, 1981; Rozeboom, 1978; Schmitt, Coyle, & Rauschenberger, 1977).

Many such cross-validity formulas have been proposed (e.g., Browne, 1975; Darlington, 1968;

Herzberg, 1969; Lord, 1950; Nicholson, 1960; Rozeboom, 1978; Stein, 1960).

When shrinkage is calculated through the use of a cross-validity formula, any finite

sample size will result in a cross-validity estimate that is smaller than the sample R2. Similar

conceptually to Cronbach's reliability coefficient alpha, cross-validity formulas attempt to

estimate the average of all possible empirical cross-validations (Wherry, 1975). For example,

using the random model cross-validity estimate developed independently by Stein (1960) and

Darlington (1968), Rc2 = 1 [(1 R2) (N 1)(N- 2) (N + 1)] 1 [(N p- 1) (N p- 2)(N)] , a

researcher who calculates a sample R2 = .400 with 60 subjects and 4 predictors might calculate

the sample squared cross-validity as Rc2 = .297 (note that the Wherry RA is .356 for these

conditions). This cross-validity estimate implies that the researcher might be more likely to

explain 30%, not 40%, of the variance of the criterion when applying the sample regression

function to future samples.

Precision Efficacy

Precision efficacy (PE) describes how well a regression model is expected to perform

when applied to future subjects relative to its effectiveness in the derivation sample. The formal

definition of precision efficacy is PE = Rc2 I R2, where R2 is the sample coefficient of

determination and Rc2 is the sample cross-validity estimate. Because they desire regression

models that generalize well to other samples, researchers who develop prediction models hope to

limit shrinkage as much as possible relative to the sample R2 value they attained.

Using an example from Stevens (1996, p. 100), 62% shrinkage from a sample R2 = .50

to Rc2 = .191 occurs with a sample size of 50; but if the sample size had been 150, there would

have been only 16% shrinkage from the same R2 = .50 to Rc2 = .421. The precision efficacy

in the first case would be .191/.50 = .382 and in the second case PE = .842. Consequently,

even if the R2 value was significant in the first case, the results may not be expected to perform
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well enough for the model to be useful with future samples. Larger precision efficacy values

imply that a regression model is expected to generalize better for future samples.

Proportional Shrinkage. Proportional shrinkage (PS) is the amount of shrinkage relative

to R2 that occurs after a cross-validity estimate, Rc2, is calculated from the data. Proportional

shrinkage is calculated by PS = (R2 Rc2) / R2. The precision efficacy of the regression

equation, and therefore an estimate of the model's generalizability, also can be computed as

PE = 1- PS. For example, if sample R2 = .50 and 4, = .26, the proportional shrinkage

for that regression model can also be calculated as PS = (.50 .26)/.50 = .48. Proportional

shrinkage of .48, and therefore PE = .52, suggests limited generalizability for the regression

model because the R2 value shrank by almost half

Effect Size

In multiple regression research, perhaps the most common effect size is the squared

multiple correlation, R2. Effect size enables a researcher to decide a priori not only what size

relationship will be necessary for statistical significance, but also what relationship should be

considered for practical significance (Hinkle & Oliver, 1983). Light, Singer, and Willett (1990)

offered as a starting point that this effect size should be "the minimum effect size you consider

worthy of your time" (p. 194). For example, because under 10% explained variance may not

provide any new knowledge in the field, a researcher may choose a minimum practical effect size

of 20%. In multiple regression, however, the researcher must remember the effects of

shrinkageif a researcher chooses 20% explained variance (i.e., R2 = .20) as a minimum

practical effect worthy of study, that researcher does not want a corrected sample estimate (e.g.,

RA or Rc2) to be .05.

There are three basic strategies for choosing an appropriate effect size: (a) use effect

sizes found in previous studies or meta-analysis, (b) decide on some minimum effect that will be

practically significant, or (c) use conventional small, medium, and large effects such as those

defined by Cohen (1988). No matter how it is chosen, effect size must be chosen a priori. In

many cases, the researcher may have some basis for deciding the smallest correlation that would

be interesting to find, based perhaps on experience or prior research. In other cases, however,

researchers may need to rely on intuition or other means by which to choose an effect size. For

example, Stevens (1986) has suggested that p2 = .50 is a reasonable guess for social science
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research; Rozeboom (1981), however, believed p2 = .50 to be an upper limit. Indeed, because

an effect of p2 = .25 seems unreasonably large to Schafer (1993), he recommended that it serve

as an upper limit only as a last resort, when no other rationale is available. Light, Singer, and

Willett (1990) echoed Schafer: "meta-analyses often reveal a sobering fact: effect sizes are not

nearly as large as we all might hope" (p. 195).

The relationship between effect size and sample size. Stevens (1996) has emphasized

that the magnitude of the population squared multiple correlation, p2, "strongly affects how

many subjects will be needed for a reliable regression equation" (p. 125). For example, Stevens

(1996, p. 125) demonstrated that "more than 15 subjects per predictor will be needed to keep the

shrinkage fairly small" if .40 is used as R 2 in the Stein cross-validity formula, but that fewer will

be needed if R 2 = .70 . Similarly, Huberty (1994) noted that based on analysis of shrinkage

results that "it is perhaps clear that the magnitude of R 2 should be considered in addition to N/p

ratios when assessing the percent of shrinkage of R 2 that would result in the estimation process.

That is, a general rule of thumb for a desirable N/p ratio (say, 10/1) may not be applicable across

many areas of study" (p. 356). Indeed, all methods that account for effect size agree: as effect

size decreases, sample size must increase proportionately (e.g., Cohen, 1988; Darlington, 1990;

Milton, 1986; Park & Dudycha, 1974; Gatsonis & Sampson, 1989). Therefore, the first task in

any sample size analysis generally is regarded to be the identification of the expected magnitude

of the multiple correlation in the population.

Shrinkage Tolerance

Simply put, shrinkage is the size of the decrease in the sample R 2 when an appropriate

cross-validity formula is applied. Shrinkage tolerance, an a priori definition of acceptable

shrinkage, can be defined mathematically as E = R 2 R. Shrinkage tolerance can be

considered either absolute or relative. In an absolute sense, E can be set to a specific value

regardless of the effect size expected in a given study. That is, no matter what R 2 is to be used,

the researcher may wish that the expected shrinkage be within .10 of the sample R 2 value. For

example, if R 2 is expected to be near .50 and the researcher has chosen E = .10,4, will be

expected to be near .40; but if R 2 is expected to be near .35, the researcher is willing to accept

.25 for the expected shrunken Rc2 value when E is set to .10.

In a relative sense, the formula for calculating precision efficacy can also be written as
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PE = 1- EIR 2. For example, setting the predetermined acceptable shrinkage level at

E = .2R 2 provides precision efficacy of .80. To provide a numerical example, if the population

p2 is thought to be .50 and E is set at .2R 2, the sample R2 is expected to shrink only by 20% to

Rc2 = .40 and hence precision efficacy of .80; whereas, if expected R2 is near .35, Rc2 would be

expected near .28again PE = .80. Or if E is set at .3R 2, a sample R2 of .50 will be expected

to shrink by 30% to Rc2 = .35, a PE of .70.

Solving PE = 1- E/R2 for E and replacing R2 with an a priori 4 results in the

formula E = R:- (PE x 4), where 4 is the expected sample R2 effect size value chosen by

the researcher. Using this formula, a specific level of precision efficacy can be set a priori to

determine the acceptable shrinkage tolerance to use in selecting an adequate sample size. For

example, if the researcher wishes to obtain a cross-validity estimate expected to be not less than

80% of the sample R2, a priori precision efficacy would be .80. If the expected sample R2 is

though to be 4 = .50, then the shrinkage tolerance can be found by substituting the

appropriate values the equation for E. That is, shrinkage tolerance would be found a priori for

this example by E = .50 (.80 x .50) = .10.

It should be noted that in the course of the development of the PEAR method, because

R2 is a positively biased estimator of both p2 and p2c such that E(R 2) > p2 > p2c, it was

determined that a slight modification to the shrinkage tolerance formula performs better when an

estimate of p2 is more readily available than an estimate of R2 (Brooks, 1998b). This modified

E is calculated by E = pE2 (PE .1PS) pE2 , where PS = 1- PE and PE is the estimated

population p2 value (e.g., RA found in previous research or through meta-analysis). Using the

same example from above results in the following: E = .50 ([.80 .1(.20)] x .50) = .11.

The PEAR Method

The PEAR method sample size formula was developed based on a cross-validity formula

by Lord (as cited in Uhl & Eisenberg, 1970): Rc2 = 1 (N+ p + 1)(1 R2) /(N- p 1),

where N is sample size, p is the number of predictors, and R2 is the actual sample value. Uhl

and Eisenberg (1970, p. 489) found this "relatively unknown formula" (their interpretation of

Lord, 1950, differs from others) to give accurate estimates of "cross-sample" shrinkage,

regardless of sample size and number of predictors. Algebraic manipulation of the Lord formula

to solve for sample size yields the Precision Efficacy Analysis for Regression method sample
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size formula for multiple linear regression:

(2 2RE2 +E)
N = (p + 1) x

where p is the number of predictors, 4: is the a priori expected sample R2, and E is an

acceptable a priori amount of expected shrinkage. The RE serves as an effect size (note that

when using an estimated p2, the appropriate E formula should be used and that p2E should be

used in place of RE2). Shrinkage tolerance allows researchers to decide how closely to estimate

p2c, either as an absolute amount of acceptable shrinkage (e.g., E = .05), a proportional

decrease (e.g., E = .24, which represents shrinkage of 20% from RE2 to 4 = .8RE2), or using

the E formula described above. It is also worth nothing that Brooks and Barcikowski (1995)

determined that the total number of variables, (p + 1), performs better in the PEAR method than

does the number of predictors. A derivation of the PEAR method formula has been included in

Appendix A.

If a researcher wanted an Rc2 estimate to be at least 87% of the expected sample RE2 of

.53 with four predictors, the researcher would set PE to .87 and calculate

E = .53 (.87 x .53) = .069. These values would then be substituted into the PEAR method

formula to calculate the necessary sample size as 73.12. Therefore, at least 74 subjects should

provide a large enough sample so that Rc2 is expected to be greater than .46, which is 87% of the

assumed p2 of .53. Another example illustrates that if PE is desired to be .80 when using an

estimated p2, shrinkage tolerance is calculated as E = .22pE2 and the PEAR method formula

simplifies slightly to N Z (p + 1) (2 1.78p2E)/(.22p2E).

Development of the PEAR Method

Early research in its development found the PEAR method to be superior to statistical

power methods (Cohen, 1988; Gatsonis & Sampson, 1989), conventional rules (Green, 1991;

Pedhazur & Schmelkin, 1991; Stevens, 1996), and cross-validity methods (Park & Dudycha,

1974; Sawyer, 1982) in reliably and accurately limiting cross-validity shrinkage to given

acceptable a priori levels (Brooks & Barcikowski, 1995). Specifically, using an accuracy interval

of .75 s PE s .85 , the PEAR method provided accurate precision efficacy rates (i.e., actual PE

within .05 of nominal PE = .80) in all 20 conditions where expected R 2 approximated true p2

(see Appendix B). The accuracy of the other regression sample size methods was low relative to



PEAR Method 10

the PEAR method, with none of these methods accurate at PE = .80 for more than five of the

20 conditions. Furthermore, whereas the PEAR method provided consistent results across all

conditions, the other methods varied considerably in actual PE rates across both the number of

predictors and expected R 2 values.

Brooks (1998a) reported that, using a bias accuracy criterion of I E(PE)- PEI s .1PS

where PS = 1 PE, the PEAR method maintained the perfect accuracy it had shown for

PE = .80 when the precision efficacy rate was lowered to PE = .70 and also 87.5% accuracy

for PE = .60. The PE = .80 level of precision efficacy was determined to be about 20% more

efficient (i.e., standard errors which on average were 20% smaller) than the PE = .70 level,

which in turn was about 14% more efficient than the PE = .60 . Additionally, the results

showed this pattern of Relative Efficiency to hold true no matter what level of multicollinearity

was present in the predictor sets.

Because previous work has focused on the effects of sample size on the correlation

statistics for the full regression model, the current report examines impact of the PEAR method

sample sizes on the variance of the regression coefficients. First, does the PEAR method

recommend sample sizes that enable the derivation of reliable regression coefficients (that is,

coefficients with small standard errors)? In order to examine the stability of the coefficients, the

standard errors of the coefficients (SEb ) are of primary interest. One would expect that a model

based on a proper sample size will provide more reliable regression weights and therefore predict

better for future subjects. Second, despite the well-known disadvantages of stepwise regression,

it is a common method used by researchers, particularly as a means by which to handle

multicollinearity (Breiman, 1995; Huberty, 1989). Therefore, an effort was made to determine

how appropriate the sample sizes calculated by the PEAR method are for use with stepwise

regression.

Method

The cross-validational efficiency of sample size methods can be assessed analytically to

some extent. Once a sample size has been chosen via any sample size method for a given

number of predictors and a given expected p2, cross-validity can be estimated. For example,

once the number of predictors is set at four and p2 is assumed to be .25, the sample required by

the PEAR method at PE = .80 is 142. Using these values in the Stein-Darlington Rc2 formula
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gives an Rc2 of .199, or 80% of the original p2 value. Comparisons have been made in this way

for several sample size methods in Table 3.

However, several elements of the current study did not lend themselves to such analysis.

Therefore, a Monte Carlo analysis of precision efficacy rates was performed. The three PEAR

method a priori precision efficacy levels of .60, .70, and .80 (which correspond to squared cross-

validity estimates expected to be at least 60%, 70%, and 80% of the sample R 2 values,

respectively) were considered to be individual methods for the analysis. That is, sample sizes

were calculated using these PE levels with the PEAR method. Because the PEAR method has

been shown previously to be superior to other regression sample size methods, only the 15:1

subject-to-predictor ratio was included for the sake of comparison. Comparisons of the varying

precision efficacy levels of the PEAR method helped to determine the effects of larger and

smaller sample sizes on the regression coefficients.

Because a variety of factors may influence precision efficacy, three factors were

manipulated to comprise the testing situations for the study. First, three effect sizes that

represent simultaneously the estimated population squared multiple correlation pE2 and the true

population p2 were set at: .10, .25, and .40. The numbers of predictors used to define the

models in this study were 3 predictors (i.e., 4 variables including the criterion), 7, 11, and 15

predictors. Finally, four multicollinearity conditions were explored in the study: (1) extensive

multicollinearity was defined as over one-half of the predictors with VIF. > 5.0, (2) moderate

multicollinearity was defined as one-quarter of the predictors involved in such a multicollinear

relationship, (3) for all predictors in the non-multicollinear condition, V/Fj < 3.0, and (4) the

correlation matrix for the orthogonal condition contained zero correlations among all predictors.

A Turbo Pascal program was created for an original algorithm used to create 48

population correlation matrices to meet the above criteria required by this study (explained in

Brooks, 1998b). These correlation matrices, some of which can be seen in Appendix C, were

treated as population correlation matrices from which multivariate normal data were generated

for each sample in the study. Turbo Pascal procedures were developed to generate sample data

through a process that converted uniformly distributed pseudorandom numbers created by the

L'Ecuyer (1988) combined multiplicative congruential generator (translated from Press,

Teukolsky, Vetterling, & Flannery, 1992) into multivariate-normally distributed data using the
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Box-Muller transformation (adapted from Press, Flannery, Teukolsky, and Vetter ling, 1989) and

the Cholesky decomposition (adapted from Nash, 1990). Finally, these procedures were

incorporated into a Turbo Pascal program that performed the Monte Carlo simulation with

10,000 iterations. The program was run as a DOS application under Windows 95 on a computer

equipped with an Intel Pentium-MMX 133MHz processor. Double precision floating point

variables were used, providing a maximum possible range of values between 5.0 x 10-324 to

1.7 x 10308, stored with 15 to 16 significant digits.

Data Analysis Procedures

During program execution, several statistics were computed and recorded. For each

sample, the program performed a standard multiple linear regression analysis based on

algorithms provided in Barcikowski (1980) and a stepwise analysis based on Jennrich (1977).

The program first calculated the necessary information from the full-model regression for each

sample (e.g., PE, R2 , Wherry RA2, Stein Rc2, SEb). Both RA and Rc2 were set equal to zero

when they were negative, as recommended by Cohen and Cohen (1983) and Darlington (1990).

These data were averaged over the number of iterations for each condition. Finally, counts were

made for several statistics regarding their significance or accuracy. For example, statistical

significance at a = .05 was tested for both the full regression model and the regression

coefficients, as was the accuracy of PE and R. Similar statistics were collected for the stepwise

analyses, with appropriate adaptations such as Rc2(p) and Rl(k), which estimate cross-validity for

the total number of predictors and only the number of predictors in the final model, respectively.

In addition to these raw statistics, the appropriate calculations were made and data were

collected as required for bias, root mean squared error (RMSE), Relative Efficiency, statistical

power, and the standard deviations of several key estimates. Statistical bias is defined as the

difference between the population value p2 and the expected value of its estimate:

Bias = E(0) 0, where 0 is the population parameter and E(0) is the expected value of the

sample statistic or an average of the statistic over infinite samples (Drasgow, Dorans, & Tucker,

1979; Kromrey & Hines, 1995; Mooney, 1997).

The root mean squared error (RMSE) provides an indication of the statistic's variability.

Mean squared error is the average of the squared differences between the population parameter

and its estimate for each sample. RMSE, then, is the square root of the mean squared error for

1°.1)
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the given statistic: RMSE(0) = 4(0 O;)2 /n, where 0 is the known population parameter (as

set in the computer algorithm), O. is the estimate of that parameter obtained in sample i of the

Monte Carlo simulation, and n is the total number of samples taken in the Monte Carlo study

(Darlington, 1996; Drasgow, Dorans, & Tucker, 1979; Kennedy, 1988; Mooney, 1997). Mooney

(1997) defined Relative Efficiency as the ratio of two RMSE values, multiplied by 100 to convert

it to a percentage: Relative Efficiency = 100 x RMSE(OA)/RAISE(OB), where OA and OB are

two different estimates the same parameter (Mooney, 1997). Values under 100 would indicate

the superiority of estimator OA (i.e., OA with smaller RMSE).

In order to examine the stability of the coefficients, the standard errors were examined in

order to determine how reliable the estimates were for each method. For the purpose of

comparing sample size methods, the Relative Efficiency of the coefficients was examined.

Several of the analyses could not be performed for the 15:1 ratio because no a priori precision

efficacy rate could be fixed for this method.

Finally, it should be noted that the study was carried out from certain perspectives, which

implied specific delimitations. That is, this study applied to standard ordinary least squares

regression analysis with all predictors entered simultaneously in the full-model case. Also a

random model perspective was assumed, where both the predictors and the criterion were

sampled together from a joint multivariate normal distribution. The random model is often more

appropriate for educational researchers and social scientists because they frequently measure

random subjects on predictors and criterion simultaneously and therefore are not able to fix the

values for the independent variables. Also, the current study considered only sample sizes

required for multiple linear regression used to develop prediction models, one of the most

common and most important uses of regression equations in the social sciences (Huberty, 1989;

Weisberg, 1985). Consequently, the focus of this study is on the determination of sample sizes

for the generalizability of prediction equations, not the power of statistical tests for null

hypotheses concerning multiple correlation or the regression coefficients.

Results and Discussion

The PEAR method recommended sample sizes that provided reliable regression

coefficients. More specifically, higher PE levels provided more stable coefficients. For the

conditions with three predictors, Table 4 provides the standard errors of the coefficients for the

14



PEAR Method 14

four sample size methods; similarly, Table 5 provides this information for seven predictor

models. These tables show that the precision efficacy levels that recommended larger samples

consistently resulted in smaller standard errors of the coefficients, regardless of the number of

predictors or effect size. Although the problem of multicollinearity was not cured by the PEAR

method, higher levels of precision efficacy do indeed help alleviate the effects. The results

showed similar patterns for the 11 and 15 predictor cases as well.

Table 6 provides the relative efficiency of the methods compared for all numbers of

predictors, all multicollinearity levels, and all effect sizes. For this table, the standard errors for

the individual predictors were used for comparison because, for unbiased estimates such as the

regression coefficients, RMSE approximates the standard error. To create Table 6, the relative

efficiency of each predictor was calculated and then those values were averaged for the predictor

set. It would not have been appropriate to average the results for Table 6 across predictors if the

results had not been so consistent. For example, in Table 6 for p = 3 at p2 = .40 in the

orthogonal condition, the relative efficiency of the PE = .80 level as compared to PE = .70,

represented as RMSE(.80)I RMSE(.70), is shown to be 80.8%. Using the values from Table 4, it

can be determined that for p = 3 at p2 = .40 in the orthogonal condition, the relative

efficiency for coefficients 1 was 80.9% (.102/.126); similarly, relative efficiency for coefficient

2 can be calculated to be 81.7% and for coefficient 3 at 79.6%.

There is a striking similarity between the relative efficiency statistics in Table 6 and those

found by Brooks (1998a) for the correlation statistics. Specifically, the relative efficiency

statistics show that, regardless of multicollinearity level, the magnitude of the standard errors of

the coefficients from the PE = .80 level were, on average, about 19% or 20% smaller than

those from the PE = .70 level. Similarly, Relative Efficiency comparisons of the PE = .70

and PE = .60 levels showed PE = .70 to be approximately 13% or 14% more efficient in

terms of standard errors. Graphically, the distribution of one coefficient, which was involved in

extensive multicollinearity, has been provided as Appendix D.

Stepwise Regression

The use of the PEAR method in stepwise regression analyses provided less conclusive

results. For orthogonal predictors, the PEAR method did not fail; unfortunately, as

multicollinearity increased, the results were less impressive. However, stepwise regression did

15
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seem to help manage multicollinearity better than standard, full model regression. The average

standard errors for the coefficients from the stepwise solutions were smaller than their full model

counterparts. That is, when a multicollinear coefficient was kept in the final model, but others

with which it correlated were removed, it usually was more precise due to smaller standard error.

Table 7 provides average precision efficacy rates for the stepwise analyses performed in

the study. Table 7 shows that the method for calculating stepwise Rc2 using the total number of

predictors in the full model, Rc2(p), tended to result in precision efficacy below that of the full

model; however, the method by which the stepwise Rc2 was calculated using the number of

predictors in the final model, Rc2(k), usually resulted in estimates above the full model R.2. That

the PE R2 values are larger than PE R2 indicate that the two Rc estimates differ. For example,
Rc(k) Rc(p)

the average Rc2(,) value for the orthogonal p2 = .40 at PE = .80 with three predictors was

.337, but Rcvo = .350. Examination of Table 8, which presents that precision efficacy based on

Rcw, illustrates that stepwise precision efficacy was impacted by multicollinearity in stepwise

analyses, even though neither PE nor Rc2 were affected by multicollinearity in the full model.

Interestingly, Table 7 and Table 8 together indicate that the orthogonal stepwise PE rates based

on R 2 did not differ drastically from the full model counterparts; that is, these stepwise PEc(p)

rates for the orthogonal condition often fell within the accuracy interval defined for the full

model.

Table 9 provides the cross-validity estimates for Rc2(p) across the four multicollinearity

conditions. In most cases, the estimate decreased further as multicollinearity became more

extensive. In all cases, both the moderate and extensive multicollinearity conditions resulted in

lower R 2 estimates than were obtained in the orthogonal condition. The relative efficiency forC(p)

2 2Rcu4 did not show a pattern similar to that shown by Rc in the full model situation; that is, the

results varied considerably depending on the level of multicollinearity in the predictor set.

The results suggest that for less multicollinear data, precision efficacy levels do not drop

dramatically for stepwise analyses. Table 8 indicates that more extensive multicollinearity

requires larger samples to attain higher precision efficacy rates. That is, although the orthogonal

and non-multicollinear conditions provide PE rates nearly as large as their a priori full model

values, more extensive multicollinearity lowers the actual PE ratessometimes substantially.

However, for the p2 = .10 effect size, which normally requires larger samples, the reduction in

16
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PE rates in not nearly so severe as for the p2 = .40 effect size (see Table 8).

The standard errors of the coefficients calculated and displayed in Table 10 were averages

only for the samples in which the predictor was included in the final model. Table 10 reveals

that in the stepwise situation, multicollinearity also caused the coefficients to become less stable.

Table 11 shows that no convenient patterns of relative efficiency were present for the standard

errors of the coefficients from the stepwise solutions beyond the orthogonal condition. However,

at higher sample sizes, the standard errors from the orthogonal stepwise models were nearly

equivalent to the full model (e.g., Table 5 versus Table 10).

Additionally, the larger relative decrease of the PE = .70 and the PE = .60 levels of

precision efficacy from the orthogonal to the extensive multicollinearity conditions may indicate

that higher PE levels are more appropriate for stepwise analyses. For example, from the

orthogonal to extensive multicollinearity conditions, the actual PE rates for PE = .80 at

p2 = .40 with seven predictors decrease from .783 to .627 (or by 0.156); there was a decrease of

0.231 for PE = .70 and 0.254 for PE = .60 (see Table 8). Perhaps an a priori PE value of .85

or .90 would abate this decrease even more than the .80 level does. However, it certainly does

not appear that arbitrary doubling of sample size is the proper solution to stepwise regression

sample sizes (as is recommended by Tabachnick and Fidell, 1989, for example).

Because stepwise models usually result in slightly lower sample R 2 values, perhaps a

reduction in the expected RE value, which in turn would result in a larger sample size, would be

more appropriate. For example, fewer predictors in the final models as multicollinearity

increased resulted in smaller average sample R 2 values: at PE = .80, p2 = .40, and seven

predictors, the orthogonal R 2 was .412, the non-multicollinear R 2 was .407, the moderately

multicollinear R 2 was .360, and the extensively multicollinear R 2 was .307 (in contrast, the full

model R 2 was very nearly .434 for each of the four multicollinearity levels).

Indeed, that there were fewer predictors in the final model also often reduced the standard

error of prediction for the final model, as compared to the full model (Brooks, 1998b).

Therefore, because the standard errors of the coefficients were usually smaller than for the full

model, stability (relative to the full model) of the stepwise solution appears to be less a problem

than whether the best theoretical model was chosen. But when multicollinearity is a population

condition, "it matters little as far as prediction is concerned which of the variables involved in the
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multicollinearity is removed from the estimated model" because the multicollinearity is always

expected to be there (Mason, Gunst, & Webster, 1975, p. 289).

Finally, it must be recognized that stepwise analyses are complicated by the choice of

Rc2(p) versus Rc2(k) for cross-validity. Because Rc2(k) was found to be liberal for many of the

situations (cf. Cohen & Cohen, 1983; Derksen & Keselman, 1992), Rc2(p) was chosen for most of

the analyses in the present study. Derksen and Keselman (1992) and Cohen and Cohen (1983)

have recommended that an adjusted R 2 value calculated based on the full p predictors, RA2(p), is

better than RA(k) calculated by using only the number of predictors (k) in the final model.

Derksen and Keselman found that although RA(k) was certainly a better estimate of the stepwise

p2 than R 2, it overestimated the population value for many subject-to-predictor combinations. It

is interesting to note that as of version 7.0, SPSS uses stepwise regression summary statistics,

including Adjusted R Square, that are based on the number of predictors that are "currently

entered in the equation" (SPSS Inc., 1996, p. 434). However, current results do not support the

notion that this issue has been decided.

Scientific and Educational Importance

The primary goal of Precision Efficacy Analysis for Regression is to provide a means by

which the researcher can assess the prediction potential (i.e., generalizability) of a regression

model relative to its performance in the derivation sample. As Cohen (1990) stated, "the

investigator is not interested in making predictions for that samplehe or she knows the criterion

values for those cases. The idea is to combine the predictors for maximal prediction for future

samples" (p. 1306). Precision Efficacy Analysis for Regression has been shown through a line of

research (Brooks, 1998a, 1998b; Brooks & Barcikowski, 1994, 1995, 1996) to be a viable

method for this generalizability analysis.

The PEAR method appears to fill an important gap in the regression literature in that it

recommends sample sizes for prediction based not only on the number of predictors in a study,

but also on the size of the effect expected. Indeed, most sample size methods in other areas of

statistics, including fixed model regression, consider effect size to be an essential part of the

calculation. The PEAR method provides a means by which researchers can choose samples by

setting a priori effect sizes, shrinkage tolerance, and precision efficacy levels. Brooks (1998a)

and Brooks & Barcikowski (1995) have shown that prediction models produced using
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appropriately large sample sizes will better estimate p2c . The most important argument for the

PEAR method is that a model based on a proper sample size, as suggested by the PEAR method,

will provide more reliable regression weights. Therefore, these models will predict better for

future subjects because, ultimately, the efficiency of a prediction model depends not only on

correlation statistics such as R 2 and 4, but also on the stability of the regression coefficients

used to calculate predicted scores.

From the relative efficiency statistics it would seem that the PE = .80 level used with

the PEAR method usually would be most desirable. However, rather than rely on such a

generalization, researchers must be consider the needs of each project. For example, at lower

population p2 effect sizes, the statistics based on the methods become rather close in absolute

value. For example, at p2 = .10 with three predictors, Rc2 was .088 and SEb averaged 0.05 for

the PE = .80 level but Rc2 = .077 with average SEb = 0.07 for PE = .60. The PE = .80

level required 331 subjects to obtain its larger Rc2, whereas the PE = .60 level only required

168 subjects to obtain a value that many researchers might find acceptable (Brooks, 1998b).

Other researchers may determine, however, that the additional subjects recommended by the

PE = .80 level are well worth the added precision efficacy. These dramatic differences in

sample sizes must be balanced against the expected gain in precision and Rc2, particularly at

lower effect sizes. The sample size differences are not quite so striking at higher effect sizes, but

still must be considered. For example, at p2 = .40 and three predictors, the extra 28 subjects

recommended by the PE = .80 (N z 59) level as compared to the PE = .60 level (N Z 31)

resulted in the more noticeable difference in average Rc2 of .350 versus .294, respectively, and

SEb of 0.10 and 0.14, also respectively. Fortunately, thoughtful adjustments to the a priori

precision efficacy or the shrinkage tolerance enable researchers to use the PEAR method to make

such choices.

Some may argue that effect sizes required by the PEAR method are too difficult to

determine"if one knew the answer to that question one would not need to do the study. . ."

(Schafer, 1993, p. 387)but blind adherence to conventional subject-to-predictor ratios certainly

cannot be better research practice. Further, research in the evolution of the PEAR method has

determined that when expected R 2 overestimates the actual p2 value by too much (e.g., based on

an effect size too large or due to an inappropriate conventional rule), no regression sample size
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method will recommend appropriate sample sizes for generalizability. For example, Brooks and

Barcikowski (1995) found that when RE = .25 but p2 = .10, precision efficacy rates were in

the .47 to .50 range even for PE = .80. This reinforces the need for carefully chosen effect

sizes in regressionas Schafer (1993) continued, ". . . but a value is needed anyway" (p. 387).

When effect sizes are difficult to determine, pilot studies, meta-analyses, and careful

interpretation of previous research play a critical role in the research process. Fortunately,

because the PEAR method has performed well at a variety of effect sizes, numbers of predictors,

shrinkage tolerance levels, and levels of multicollinearity, it seems to be well-suited to a variety

of research situations.

These results are based on long-run expectations of the performance of the PEAR

method. Berry (1993) has noted that "unbiasedness of OLS [ordinary least squares] estimators in

no way ensures that an individual estimate of a regression parameter based on a single sample

will equal its population value" (p. 18). Similarly, although the expected value of precision

efficacy has been shown to be accurate in the long-run, any given sample size based on the

PEAR method may not produce a PE value within the stringent accuracy range used in this study.

However, results based on larger samples are less likely to vary, because larger samples generally

result in smaller standard errors.

Therefore, developing a model with good precision efficacy should be considered only a

first step in the model validation process. The use of mathematical cross-validity formulas does

not supersede the need for the validation of regression models in other samples. The cross-

validity formulas suggest how well a model should perform, but the safest way to determine that

a model will generalize to future subjects is to test it with new data. Indeed, replication is basic

to all science and is essential to confidence in both the reliability and the generalizability of

results. Additionally, Darlington (1990) and Montgomery and Peck (1992) have expressed the

importance not only of model validation but also of model adequacy, which requires residual

analyses for violations of assumptions, searching for high leverage or overly influential

observations, and other analyses that test the fit of the regression model to the available data.

Darlington noted, however, that robustness to certain violations of assumptions continues to

increase as sample size increases.

The use of mathematical cross-validity formulas does not supersede the need for the
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validation of regression models in other samples. The cross-validity formulas suggest how well a

model should perform, assuming that the sample from which it was derived was reasonably

representative of the population; however, any given sample can deviate from what would be

expected or representative. Further, no matter what the precision efficacy, a model that does not

predict well in a derivation sample also probably will not predict well in any other samples.

Finally, cross-validation does not depend upon the assumptions required for use of the cross-

validity equations, thus providing a possible substitute when the assumptions are not met

(Darlington, 1990; Wherry, 1975).

It is hoped that both the evidence presented and the simplicity of the PEAR method will

encourage researchers to consider more carefully the issues of sample size, effect size, and

generalizability for regression research. Because generalizability may be an even more important

issue than statistical power in much regression research, an assessment technique such as

Precision Efficacy Analysis for Regression appears beneficial to a more complete understanding

of regression results.
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Table 1

Sample Sizes at Two Levels of Expected Sample (R2 ) and Four Predictors

Method

Assumed Population Squared Correlation

4 = .25 RE = .10'

Cohen (1988) [1 13 = .90, a = .05] 48 144

Darlington (1990) Precision Analysis b 166 230

Darlington (1990) Specific Conclusions 42 134

Gatsonis & Sampson (1989) [1 p = .90, a = .05] 55 165

Milton (1986) [t = 2, Arj2 = .02, a = .05] 155 185

Park & Dudycha (1974) [y = .90]` 93 173

PEAR method [E = .22RE2] 142 414

15:1 (Stevens, 1996) 60 60

30:1 (Pedhazur & Schmelkin, 1991) 120 120

50 + 8p (Green, 1991) 82 82

Sawyer (1982) [K = 1.05] 55 55

a for Cohen (1988) and Gatsonis & Sampson (1989), actually RE = .30.

for RE = .25, lower confidence limit (LCL) is .16; for 4 = .10, LCL = .04.

cfor RE = .25, E = .05; for RE = .10, E = .03.
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Table 2

Subjects per Variablea Sample Size Ratios from the PEAR Method and the 15:1 ratio

Precision Efficacy (PE)
2

PE .60 .70 .80 15:1 ratio

.05 87.4 116.2 173.7 15.0

.10 41.9 55.5 82.8 15.0

.15 26.8 35.3 52.5 15.0

.20 19.2 25.2 37.4 15.0

.25 14.6 19.2 28.3 15.0

.30 11.6 15.1 22.2 15.0

.35 9.4 12.3 17.9 15.0

.40 7.8 10.1 14.6 15.0

.45 6.6 8.4 12.1 15.0

.50 5.5 7.1 10.1 15.0

.55 4.7 6.0 8.4 15.0

.60 4.0 5.0 7.1 15.0

.65 3.4 4.3 5.9 15.0

.70 2.9 3.6 4.9 15.0

.75 2.5 3.0 4.0 15.0

Note. Here, E =
22 (PE APS)pE, where PS = 2

i1 PE and pE is the estimated

population p2 value. To calculate N, multiply the number of variables by the tabled

value and round to the next larger integer if necessary

a number of variables is (p+1), where p is the number of predictors.

2'6
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Table 3

Stein-Darlington Cross-Validity Estimates based on Sample Sizes from Several Methods at Two

Levels of Expected Sample Squared Multiple Correlation (RE2 ) and Four Predictors

Method

4 = .25 RE= .10

PEa N Rc2 PEa

Cohen (1988)

Darlington (1990) b

Darlington (1990)C

Gatsonis & Sampson (1989)

Milton (1986)

Park & Dudycha (1974)

PEAR method [E = .22p2E]

PEAR method [E = .33p2E]

15:1 (Stevens, 1996)

30:1 (Pedhazur & Schmelkin, 1991)

50 + 8p (Green, 1991)

Sawyer (1982) [K = 1.05]

48 .083 .33 144 .041 .41

166 .207 .83 230 .064 .64

42 .055 .22 134 .036 .36

55 .108 .43 165 .049 .49

155 .204 .82 185 .054 .54

93 .171 .68 173 .051 .51

142 .199 .80 414 .080 .80

96 .174 .69 278 .070 .70

60 .121 .49 60 -.054 .00

120 .190 .76 120 .028 .28

82 .159 .64 82 -.009 .00

55 .108 .43 55 -.070 .00

a PE here is calculated as Rc2/p2. b Precision Analysis. Specific Conclusions.
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Table 4
Average Standard Errors of the Standardized Coefficients (SEb) for Three Predictors

Multicollinearity
Condition

p2 Method N SEb
1

SEb
2

SEb
3

Orthogonal .40 PE = .80 59 .102 .103 .094
PE = .70 40 .126 .126 .118
PE = .60 31 .147 .147 .136
15:1 ratio 45 .119 .118 .109

.25 PE = .80 113 .080 .080 .079
PE = .70 77 .098 .099 .097
PE = .60 59 .114 .113 .111
15:1 ratio 45 .131 .132 .128

.10 PE = .80 331 .052 .052 .050
PE = .70 222 .064 .064 .062
PE = .60 168 .074 .073 .071
15:1 ratio 45 .146 .147 .143

Non .40 PE = .80 59 .108 .108 .096
PE = .70 40 .134 .135 .120
PE = .60 31 .155 .155 .139
15:1 ratio 45 .127 .126 .111

.25 PE = .80 113 .139 .082 .136
PE = .70 77 .170 .100 .166
PE = .60 59 .195 .115 .193
15:1 ratio 45 .228 .132 .223

.10 PE = .80 331 .071 .066 .055
PE = .70 222 .089 .083 .068
PE = .60 168 .101 .095 .079
15:1 ratio 45 .204 .189 .155

Moderate .40 PE = .80 59 .202 .254 a .140
PE = .70 40 .254 .3120 .173
PE = .60 31 .295 .365a .201
15:1 ratio 45 .236 .293 a .160

.25 PE = .80 113 .154 .2138 .146
PE = .70 77 .189 .2608 .177
PE = .60 59 .218 .3028 .210
15:1 ratio 45 .252 .3498 .239

.10 PE = .80 331 .114 .1518 .090
PE = .70 222 .140 .187a .113
PE = .60 168 .160 .2138 .128
15:1 ratio 45 .327 .4368 .260

Extensive .40 PE = .80 59 .183 .264 a .3088
PE = .70 40 .228 .327' .3828
PE = .60 31 .264 .387a .4538
15:1 ratio 45 .212 .308' .3570

.25 PE = .80 113 .129 .381a .4078
PE = .70 77 .158 .466a .4990
PE = .60 59 .179 .5378 .5738
15:1 ratio 45 .209 .6318 .6728

.10 PE = .80 331 .1288 .1248 .065
PE = .70 222 .1568 .1528 .080
PE = .60 168 .1808 .176' .093
15:1 ratio 45 .363 8 .3528 .185

Note. SEb approximates RMSE when estimate is unbiased as is
indicates {predictor with VIF> 5.0 (i.e., involved in multicollinearity).'
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Table 5
Average Standard Errors of the Standardized Coefficients (SEb ) for Seven Predictors

Multicollinearity
Condition

p2 Method
SEb

1

SEb
2

SEb
3

SEb
4

SEb
5

SE
6

SEb
7

Orthogonal .40 PE = .80 117 .074 .073 .073 .068 .073 .074 .074
PE = .70 81 .091 .089 .089 .083 .089 .091 .091
PE = .60 63 .105 .103 .102 .098 .105 .104 .105
15:1 ratio 105 .079 .079 .077 .071 .078 .078 .078

.25 PE = .80 226 .058 .058 .056 .056 .058 .058 .058
PE = .70 153 .071 .072 .069 .069 .071 .072 .071
PE = .60 117 .084 .083 .080 .080 .082 .083 .082
15:1 ratio 105 .087 .089 .085 .083 .088 .086 .087

.10 PE = .80 663 .036 .037 .037 .036 .037 .037 .037
PE = .70 444 .044 .044 .045 .045 .046 .046 .045
PE = .60 335 .051 .052 .053 .052 .052 .053 .052
15:1 ratio 105 .093 .095 .096 .095 .096 .097 .096

Non .40 PE = .80 117 .100 .102 .100 .097 .109 .091 .081
PE = .70 81 .123 .124 .123 .119 .135 .111 .099
PE = .60 63 .142 .144 .141 .138 .156 .126 .116
15:1 ratio 105 .105 .108 .106 .103 .117 .096 .087

.25 PE = .80 226 .070 .085 .070 .064 .090 .071 .079
PE = .70 153 .087 .105 .086 .078 .109 .086 .098
PE = .60 117 .099 .121 .098 .089 .127 .099 .113
15:1 ratio 105 .106 .129 .105 .094 .135 .106 .120

.10 PE = .80 663 .043 .042 .050 .061 .052 .057 .054
PE = .70 444 .053 .052 .060 .075 .065 .069 .066
PE = .60 335 .060 .061 .071 .086 .075 .080 .076
15:1 ratio 105 .111 .111 .128 .158 .137 .148 .138

Moderate .40 PE = .80 117 .192' .137 .141 .177' .154 .094 .130
PE = .70 81 .236' .170 .174 .219' .188 .116 .158
PE = .60 63 .2708 .191 .200 .249' .215 .132 .182
15:1 ratio 105 .203a .146 .151 .1888 .161 .099 .136

.25 PE = .80 226 .129 .089 .1308 .079 .080 .074 .1808
PE = .70 153 .159 .109 .1608 .097 .099 .092 .2208
PE = .60 117 .184 .126 .1878 .113 .114 .107 .258'
15:1 ratio 105 .196 .134 .1978 .119 .121 .110 .273'

.10 PE = .80 663 .086 a .043 .098' .083 .060 .047 .041
PE = .70 444 .103' .052 .1208 .101 .072 .058 .051
PE = .60 335 .121 8 .061 .139 a .118 .084 .066 .059
15:1 ratio 105 .222' .110 .256' .216 .154 .123 .107

Extensive .40 PE = .80 117 .118 .131 .166' .168' .256a .228' .132
PE = .70 81 .143 .161 .1998 .204 ' .3068 .273 a .158
PE = .60 63 .167 .187 .2338 .2368 .359 a .318 a .184
15:1 ratio 105 .125 .141 .1758 .178' .269' .239' .138

.25 PE = .80 452 .093 .168' .1478 .150' .097 .121 .147'
PE = .70 307 .113 .2078 .1818 .184' .118 .150 .179'
PE = .60 234 .131 .237' .207' .2138 .139 .173 .205'
15:1 ratio 105 .138 .254' .222' .227 a .147 .186 .2218

.10 PE = .80 663 .153 a .136 a .083 .106 a .063 .047 .207 a
PE = .70 444 .185' .164' .101 .129a .076 .058 .2508
PE = .60 335 .213' .187' .114 .150' .087 .066 .287'
15:1 ratio 105 .3908 .348 a .213 .2728 .159 .123 .526 a

Note. SEb approximates RMSE when estimate is unbiased as is [3..
a indicates predictor with VIF> 5.0 (i.e., involved in multicollinearity).

2
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Table 6
Average Relative Efficiency of the Standardized Coefficients Across Predictors

P2 p Method Comparison Orthogonal Non Moderate Extensive

.40 3 RMSE(.80) / RMSE(.70) 80.8 80.2 80.6 80.5
RMSE(.80) / RMSE(.60) 69.5 69.5 69.2 68.5
RMSE(.70) / RMSE(.60) 86.1 86.6 85.9 85.1

7 RMSE(.80) / RMSE(.70) 81.7 81.6 81.3 82.9
RMSE(.80) / RMSE(.60) 70.5 70.6 71.2 71.1
RMSE(.70) / RMSE(.60) 86.3 86.6 87.6 85.8

11 RMSE(.80) / RMSE(.70) 81.4 81.8 81.6 80.5
RMSE(.80) / RMSE(.60) 70.7 70.4 70.8 70.5
RMSE(.70) / RMSE(.60) 86.8 86.1 86.7 87.6

15 RMSE(.80) / RMSE(.70) 81.7 81.5 80.4 81.9
RMSE(.80) / RMSE(.60) 70.7 70.6 69.8 70.7
RMSE(.70) / RMSE(.60) 86.5 86.7 86.9 86.3

.25 3 RMSE(.80) / RMSE(.70) 81.3 81.9 82.0 81.7
RMSE(.80) / RMSE(.60) 70.7 71.0 70.2 71.3
RMSE(.70) / RMSE(.60) 87.0 86.7 85.7 87.4

7 RMSE(.80) / RMSE(.70) 81.2 81.5 81.2 81.6
RMSE(.80) / RMSE(.60) 70.0 71.0 69.9 70.7
RMSE(.70) / RMSE(.60) 86.2 87.1 86.1 86.6

11 RMSE(.80) / RMSE(.70) 81.4 81.6 81.6 81.4
RMSE(.80) / RMSE(.60) 70.5 70.8 70.6 71.1
RMSE(.70) / RMSE(.60) 86.6 86.8 86.5 87.3

15 RMSE(.80) / RMSE(.70) 81.8 81.2 81.0 81.4
RMSE(.80) / RMSE(.60) 71.2 70.6 70.2 70.5
RMSE(.70) / RMSE(.60) 87.0 86.9 86.8 86.5

.10 3 RMSE(.80) / RMSE(.70) 81.0 80.1 80.6 81.6
RMSE(.80) / RMSE(.60) 70.6 69.8 70.8 70.5
RMSE(.70) / RMSE(.60) 87.2 87.2 87.9 86.4

7 RMSE(.80) / RMSE(.70) 81.9 81.6 82.1 82.4
RMSE(.80) / RMSE(.60) 70.4 70.5 70.6 72.0
RMSE(.70) / RMSE(.60) 86.0 86.4 86.0 87.4

11 RMSE(.80) / RMSE(.70) 81.1 81.9 81.8 81.7
RMSE(.80) / RMSE(.60) 70.4 70.9 71.2 70.6
RMSE(.70) / RMSE(.60) 86.8 86.6 87.1 86.5

15 RMSE(.80) / RMSE(.70) 81.0 80.9 81.7 81.1
RMSE(.80) / RMSE(.60) 70.2 70.4 70.7 70.7
RMSE(.70) / RMSE(.60) 86.6 87.1 86.5 87.2

Note. SEb approximates RMSE when estimate is unbiased as is R,.
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Table 7
Average Precision Efficacy (PE) for Orthogonal Stepwise Analyses as Compared to Orthogonal
Full Model
,2
V Method N k PE PE 2

Rc(p)
PE 2

Rc(k)

.40 PE = .80 3 59 2.492 .802 .783 .828
7 117 3.528 .803 .783 .892

11 176 4.074 .806 .785 .921
15 234 4.871 .805 .784 .931

PE = .70 3 40 2.088 .690 .634 .753
7 81 3.166 .714 .666 .856

11 121 3.840 .718 .674 .891
15 161 4.372 .719 .670 .909

PE = .60 3 31 1.780 .597 .508 .688
7 63 2.894 .629 .546 .824

11 94 3.677 .636 .561 .864
15 125 4.071 .640 .556 .891

15:1 ratio 3 45 2.213 .729 .685 .780
7 105 3.422 .780 .755 .883

11 165 4.003 .791 .767 .916
15 225 4.821 .798 .774 .929

.25 PE = .80 3 59 2.712 .800 .788 .815
7 117 3.595 .802 .786 .889

11 176 6.034 .805 .789 .885
15 234 4.695 .803 .785 .931

PE = .70 3 40 2.319 .698 .653 .742
7 81 3.220 .708 .669 .848

11 121 5.365 .715 .677 .846
15 161 4.303 .718 .679 .908

PE = .60 3 31 1.980 .605 .531 .676
7 63 2.947 .621 .553 .813

11 94 4.858 .634 .563 .815
15 125 4.042 .637 .569 .886

15:1 ratio 3 45 1.626 .496 .400 .597
7 105 2.839 .581 .498 .797

11 165 4.724 .612 .530 .808
15 225 3.995 .622 .549 .882

.10 PE = .80 3 59 2.126 .801 .787 .848
7 117 4.133 .803 .790 .875

11 176 6.132 .803 .793 .882
15 234 6.544 .803 .789 .906

PE = .70 3 40 1.829 .697 .659 .787
7 81 3.500 .711 .673 .836

11 121 5.591 .714 .687 .840
15 161 5.689 .715 .680 .877

PE = .60 3 31 1.631 .600 .540 .724
7 63 3.062 .622 .554 .804

11 94 5.011 .628 .571 .806
15 125 5.058 .634 .570 .855

15:1 ratio 3 45 0.728 .169 .111 .331
7 105 1.597 .183 .088 .558

11 165 2.572 .187 .073 .631
15 225 2.907 .188 .062 .731

Note. PE is the precision efficacy for the full model; PE n2 represents precision efficacy for the stepwise model
-c(p)

2
calculated using Rc with the number of predictors in the full model; PE Q2 represents precision efficacy for the

2 -C(k)
stepwise model calculated using Rc based on the number of predictors in the final stepwise model.
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Table 8

Average Precision Efficacy for Stepwise Solution with Seven Predictors in Full Model

p2 Method Orthogonal Non Moderate Extensive

.40 PE = .80 .783 .775 .699 .627

PE = .70 .666 .629 .502 .429

PE = .60 .546 .484 .355 .292

15:1 ratio .755 .738 .651 .571

.25 PE = .80 .786 .783 .740 .714

PE = .70 .669 .661 .562 .509

PE = .60 .553 .538 .410 .356

15:1 ratio .498 .481 .346 .296

.10 PE = .80 .790 .786 .783 .765

PE = .70 .673 .665 .664 .636

PE = .60 .554 .543 .542 .508

15:1 ratio .088 .080 .082 .074

Note. Precision Efficacy for the stepwise solution is PEp 2 based on the Stein-Darlington formula using the total
'`C(p)

number of predictors in the full model (p).

32



PEAR Method 32

Table 9
Average Cross-Validity Estimates and their RMSE for the Several Multicollinearity Conditions

P2 p Method Orthogonal Non Moderate Extensive

.40 3 PE = .80 .337 (.102) .337 (.109) .242 (.117) .300 (.109)
PE = .70 .288 (.126) .296 (.129) .183 (.142) .232 (.134)
PE = .60 .247 (.138) .259 (.141) .146 (.153) .186 (.147)
15:1 ratio .302 (.117) .310 (.123) .200 (.135) .254 (.127)

7 PE = .80 .327 (.088) .323 (.085) .269 (.151) .208 (.122)
PE = .70 .289 (.114) .270 (.111) .199 (.177) .151 (.150)
PE = .60 .249 (.139) .218 (.135) .151 (.194) .113 (.176)
15:1 ratio .319 (.094) .308 (.093) .251 (.157) .191 (.161)

11 PE = .80 .327 (.081) .334 (.071) .306 (.092) .290 (.080)
PE = .70 .290 (.115) .287 (.102) .237 (.096) .234 (.102)
PE = .60 .251 (.147) .240 (.129) .181 (.109) .183 (.123)
15:1 ratio .320 (.088) .328 (.075) .297 (.088) .282 (.083)

15 PE = .80 .326 (.073) .315 (.107) .323 (.074) .322 (.189)
PE = .70 .285 (.107) .268 (.131) .280 (.105) .278 (.178)
PE = .60 .244 (.141) .222 (.158) .241 (.134) .233 (.188)
15:1 ratio .322 (.076) .311 (.108) .319 (.079) .318 (.187)

.25 3 PE = .80 .214 (.069) .218 (.124) .176 (.068) .203 (.107)
PE = .70 .189 (.078) .196 (.122) .132 (.077) .168 (.107)
PE = .60 .196 (.087) .177 (.123) .102 (.083) .140 (.106)
15:1 ratio .139 (.095) .153 (.126) .078 (.086) .112 (.108)

7 PE = .80 .206 (.056) .203 (.062) .179 (.113) .172 (.114)
PE = .70 .183 (.074) .178 (.076) .142 (.132) .126 (.101)
PE = .60 .159 (.089) .154 (.084) .111 (.124) .095 (.106)
15:1 ratio .148 (.095) .142 (.088) .098 (.129) .082 (.103)

11 PE = .80 .208 (.045) .207 (.058) .179 (.103) .140 (.047)
PE = .70 .183 (.059) .180 (.065) .125 (.094) .095 (.056)
PE = .60 .159 (.071) .147 (.073) .086 (.086) .066 (.065)
15:1 ratio .152 (.073) .140 (.074) .077 (.085) .060 (.067)

15 PE = .80 .203 (.049) .194 (.043) .185 (.066) .201 (.044)
PE = .70 .181 (.068) .167 (.061) .157 (.069) .176 (.063)
PE = .60 .157 (.088) .140 (.082) .128 (.080) .150 (.083)
15:1 ratio .153 (.092) .135 (.086) .123 (.082) .146 (.086)

.10 3 PE = .80 .084 (.031) .077 (.031) .070 (.033) .074 (.032)
PE = .70 .075 (.038) .067 (.040) .059 (.041) .063 (.040)
PE = .60 .067 (.044) .058 (.046) .051 (.046) .054 (.045)
15:1 ratio .030 (.057) .025 (.056) .020 (.051) .024 (.054)

7 PE = .80 .084 (.023) .082 (.024) .081 (.023) .074 (.024)
PE = .70 .074 (.028) .072 (.029) .071 (.028) .064 (.031)
PE = .60 .064 (.033) .062 (.034) .062 (.034) .055 (.039)
15:1 ratio .019 (.047) .017 (.047) .018 (.047) .016 (.051)

11 PE = .80 .084 (.019) .087 (.032) .071 (.021) .073 (.022)
PE = .70 .076 (.024) .076 (.031) .059 (.022) .057 (.025)
PE = .60 .065 (.028) .061 (.031) .049 (.025) .042 (.027)
15:1 ratio .014 (.036) .009 (.029) .008 (.029) .005 (.027)

15 PE = .80 .083 (.017) .080 (.018) .076 (.021) .068 (.018)
PE = .70 .073 (.023) .069 (.021) .065 (.021) .058 (.020)
PE = .60 .063 (.028) .059 (.025) .055 (.026) .049 (.026)
15:1 ratio .011 (.054) .010 (.050) .009 (.050) .007 (.050)

Note. Standard deviations in parentheses. Cross-validity for the stepwise solution is represented by Rc(p), as
calculated by the Stein-Darlington formula using the number of predictors in the full model (p).

3 3
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Table 10
Average Standard Errors of the Coefficients (SEb ) for Seven Predictor Models from the
Stepwise Analyses for All Multicollinearity Conditions

Multicollinearity
Condition P2 Method

SEb
1

SA b
2

SE
b33

SE
4

SE
b5

5

SEb66
SEb

7

Orthogonal .40 PE = .80 117 .072 .073 .073 .073 .072 .072 .072
PE = .70 81 .086 .087 .088 .088 .086 .086 .086
PE = .60 63 .097 .099 .099 .101 .098 .097 .098
15:1 ratio 105 .076 .077 .077 .077 .076 .076 .076

.25 PE = .80 226 .058 .058 .058 .058 .058 .058 .058
PE = .70 153 .070 .070 .071 .071 .070 .070 .070
PE = .60 117 .080 .080 .081 .081 .080 .080 .080
15:1 ratio 105 .084 .085 .086 .086 .085 .084 .085

.10 PE = .80 663 .037 .037 .037 .037 .037 .037 .037
PE = .70 444 .045 .045 .045 .045 .045 .045 .045
PE = .60 335 .052 .052 .052 .052 .052 .052 .052
15:1 ratio 105 .093 .092 .092 .092 .092 .093 .093

Non .40 PE = .80 117 .088 .083 .092 .085 .100 .079 .080
PE = .70 81 .105 .098 .107 .100 .116 .093 .095
PE = .60 63 .118 .109 .119 .112 .128 .103 .107
15:1 ratio 105 .093 .087 .097 .090 .104 .083 .084

.25 PE = .80 226 .067 .064 .065 .063 .070 .061 .068
PE = .70 153 .081 .077 .077 .076 .082 .073 .082
PE = .60 117 .092 .087 .087 .086 .093 .083 .094
15:1 ratio 105 .097 .091 .091 .091 .097 .088 .099

.10 PE = .80 663 .039 .040 .046 .045 .045 .042 .040
PE = .70 444 .047 .049 .056 .052 .053 .051 .048
PE = .60 335 .054 .056 .064 .059 .061 .058 .055
15:1 ratio 105 .094 .096 .104 .099 .102 .100 .095

Moderate .40 PE = .80 117 .145' .106 .126 .118a .128 .082 .112
PE = .70 81 .157 2 .118 .148 .124 a .140 .099 .128
PE = .60 63 .164' .128 .165 .132' .149 .112 .137
15:1 ratio 105 148' .110 .132 .119a .132 .086 .117

.25 PE = .80 226 .108 .084 .083' .071 .075 .069 .156 a
PE = .70 153 .117 .099 .094 a .083 .090 .082 .167 a
PE = .60 117 .124 .110 .102' .092 .100 .091 .171 a
15:1 ratio 105 .127 .115 .106' .097 .105 .096 .174'

.10 PE = .80 663 .041' .039 .059 a .041 .042 .040 .040
PE = .70 444 .050' .048 .0682 .049 .051 .048 .049
PE = .60 335 .057' .055 .076' .056 .058 .056 .056
15:1 ratio 105 .098' .096 .122 a .098 .101 .096 .097

Extensive 40 PE = .80 117 .095 .114 .136 a .097 a .203 2 .129 a .094
PE = .70 81 .108 .125 .1382 .1062 .195' .1282 .105
PE = .60 63 .120 .132 .136' .117' .188' .134' .116
15:1 ratio 105 .098 .117 .138 a .099 a .202 a .127 a .096

.25 PE = .80 452 .081 .093 a .089 a .087 a .071 .090 .097 a
PE = .70 307 .093 .107' .094 a .097 a .083 .104 .106 a
PE = .60 234 .100 .118a .100' .105' .094 .115 .116 a
15:1 ratio 225 .102 .123 a .103 a .107 a .098 .119 .1212

.10 PE = .80 663 .057' .062' .056 .044 a .047 .044 .075 a
PE = .70 444 .064 a .0712 .066 .0502 .056 .053 .082 a
PE = .60 335 .0712 .0802 .073 .057' .064 .061 .091 a

15:1 ratio 105 .110' .134' .112 .100' .104 .105 .143'
a indicates predictor with VIF > 5.0 (i.e., involved in multicollinearity)
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Table 11
Relative Efficiency for Seven Predictor Models from the Stepwise Analyses

Multicollinearity

Condition P Method Comparison

Orthogonal .40 RMSE(.80) / RMSE(.70) 84
RMSE(.70) / RMSE(.60) 89

.25 RMSE(.80) / RMSE(.70) 83
RMSE(.70) / RMSE(.60) 88

.10 RMSE(.80) / RMSE(.70) 82
RMSE(.70) / RMSE(.60) 87

Non .40 RMSE(.80) / RMSE(.70) 84
RMSE(.70) / RMSE(.60) 89

.25 RMSE(.80) / RMSE(.70) 83
RMSE(.70) / RMSE(.60) 88

.10 RMSE(.80) / RMSE(.70) 83
RMSE(.70) / RMSE(.60) 87

Moderate .40 RMSE(.80) / RMSE(.70) 92 a

RMSE(.70) / RMSE(.60) 96 a

.25 RMSE(.80) / RMSE(.70) 92
RMSE(.70) / RMSE(.60) 94

.10 RMSE(.80) / RMSE(.70) 82'
RMSE(.70) / RMSE(.60) 88 a

Extensive .40 RMSE(.80) / RMSE(.70) 88
RMSE(.70) / RMSE(.60) 90

.25 RMSE(.80) / RMSE(.70) 87
RMSE(.70) / RMSE(.60) 93

.10 RMSE(.80) / RMSE(.70) 898
RMSE(.70) / RMSE(.60) 90 a

13.7 Pd Pc N

84
88

83
88

82
87

85
90

83
89

82
88

90
92

85
90

81
87

91
95

87'
91'

87'
898

83 83 84 84 84
89 87 88 89 88

82 82 83 83 83
88 88 88 88 88

82 82 82 82 82
87 87 87 87 87

86 85 86 85 84
90 89 91 90 89

84 83 85 84 83
89 88 88 88 87

82 87 85 82 83
88 88 87 88 87

85 95' 91 83 88
90 94 a 94 88 93

88' 86 83 84 93'
928 90 90 90 98 a

87' 84 82 83 82
89 a 88 88 86 88

99' 92' 104' 1008 90
100a 91 a 104' 96' 91

95 a 90a 86 87 92 a

948 928 88 90 91

85 88 a 84 83 918
90 88 a 88 87 908

a indicates predictor with VIF > 5.0 (i.e., involved in multicollinearity)
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Derivation of the PEAR Method for Sample Size Selection

Start with the Lord formula, as presented by Uhl & Eisenberg (1970):

R,2 = 1- N +p+ 1(1 - R2)
N- p- 1

Multiplying both sides by (N-p-1) yields:

(N-p-1)(R,2) = (N-p-1)- (N+p+ 1)(1- R 2)

Expanding the quantities gives:

NRc2 pRc2 Rc2 =N p 1 N p 1+ NR 2 + pR 2 + R 2

and grouping and subtracting gives:

NRc2 NR 2 = pRc2 + Rc2-p-l-p-1

By factoring the terms:

And therefore

pR 2 R 2

N(4- R2) = p(Rc2 2 + R 2) + l(Rc2 2 + R 2)

N(4- R2) = (p+ 1)(4- 2+ R2)

Multiplying both sides by (-1) and then dividing both sides by (R 2 Rc2) gives:

(2 R 2 Rc2)
N = (p+ 1)

(R 2 Rc2)

Let E = R2 Rc2 and therefore Rc2 = R 2 E:

N = (p+ 1) (2 R2 (R2 E))

Finally,

E

N = (p+ 1) (2- 2R 2 + )

36
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Appendix B

Stem-and-Leaf Plots of the Precision Efficacy Accuracy of Several Sample Size Methods

These plots were adapted from Brooks and Barcikowski (1995). The accuracy criterion used for
these results was .75 s PE s .85 . Leaves which represent accurate results have been boldfaced and
underlined. For every plot, the stem width is 0.10.

PEAR Method (Brooks & Barcikowski, 1995)

Each leaf represents one case.

50 + 8p conventional rule (Green, 1991)
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Park and Dudycha (1974) 15:1 subject-to-predictor ratio (Stevens, 1996)
Frequency Stem & Leaf Frequency Stem & Leaf

.00 0 .00 0

.00 1 5.00 1 56777

.00 2 .00 2

.00 3 .00 3

1.00 4 4 2.00 4 39

5.00 5 11349 2.00 5 39

2.00 6 69 1.00 6 1

3.00 7 019 1.00 7 9

6.00 8 455679 4.00 8 1355

3.00 9 000 5.00 9 34445

Sawyer (1982) Cohen (1988)
Frequency Stem & Leaf Frequency Stem & Leaf
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.00 1 3.00 1 169
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3.00 5 011 3.00 5 . 025

5.00 6 23455 .00 6
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.00 9 .00 9 .

30:1 N-to-p (Pedhazur & Schmelkin, 1991) Gatsonis and Sampson (1989)
Frequency Stem & Leaf Frequency Stem & Leaf

.00 0 .00 0

.00 1 .00 1

.00 2 3.00 2 125

3.00 3 166 3.00 3 667
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1.00 6 9 4.00 6 1156
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0
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.00
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04
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Appendix C

Correlation Matrices for p2 = .25 at Three and Seven Predictors

Number of

Predictors

Multicollinearity

Condition P x, x2 x3 x4 x5 x6

3 Orthogonal .25 x, .257
x2 .257 .000
x3 .343 .000 .000

Non .25 x, .257
x2 .257 -.206
x3 .343 .800 -.277

Moderate .25 x, .257
x2* .257 .709
x3 .343 .131 .683

Extensive .25 x, .257
x2* .257 .680
x,* .343 .741 .976

7 Orthogonal .25 x, .044
x2 .038 .000
x, .318 .000 .000
X4 .325 .000 .000 .000
x5 .148 .000 .000 .000 .000
x6 .016 .000 .000 .000 .000 .000
X7 .132 .000 .000 .000 .000 .000 .000

Non .25 x, .044
X2 .038 .343
x3 .318 .312 .188
X4 .325 .372 .019 .050
x5 .148 .340 .637 .422 .180
X6 .016 .027 .260 .125 .017 .117
x, .132 .136 .105 .464 .214 .364 .438

Moderate .25 x, .044
x2 .038 .198
x,* .318 .021 .510
X4 .325 .024 .392 .475
X5 .148 .235 .557 .126 .304
x6 .016 .493 .427 .265 .245 .263
x,* .132 .682 .578 .614 .201 .410 .505

Extensive .25 x, .044
x2* .038 -.445
x,* .318 .082 .095
x4* .325 .063 .425 .491
x5 .148 .533 -.195 .463 .043
x6 .016 .449 -.346 .152 .408 .387
x,* .132 .117 .420 .658 .318 .548 .165

* indicates predictor with VIF > 5.0 (i.e., involved in multicollinearity)
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Appendix D

Histograms of the Distributions of the Coefficient for One Predictor at Effect Size p2 = .25

These figures were created from data collected for each of the 10,000 samples at effect
size p2 = .25 with seven predictors in the extensive multicollinearity condition. Each figure
represents a different precision efficacy level or the 15:1 ratio. In each of the following figures,
a curve that represents the normal distribution is superimposed on the distribution of the fourth
regression coefficient from the given set of conditions (compare to Table 5).
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